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Direct methods have been applied to the SIR (single isomorphous replacement)

case to estimate structure-factor moduli from diffraction magnitudes. The joint

probability distribution function P(EH, Ep, Ed) has been calculated by explicitly

considering, as an additional primitive random variable, the cumulative error

arising from measurements and from lack of isomorphism. The speci®c feature

of the approach is that it provides estimated values of |EH| which depend on the

experimental diffraction data as well as on errors. Some test structures have

been used to check the ef®ciency of the new estimates. Patterson techniques,

using the estimated |EH|2 values as coef®cients, as well as a tangent procedure,

have been implemented into a computer program to locate the heavy atoms

automatically. All the experimental tests show that the new approach provides

results highly competitive with the traditional |EH|2 estimates.

1. Notation

fj : scattering factor of the j th atom.P
p;
P

d;
P

H �
P

f 2
j : where the summation is extended to

the protein atoms, to the derivative and to the heavy-atom

structure, respectively.

Fp, Fd, FH, Ep, Ed, EH : F represents the structure factors for

protein, derivative and heavy-atom substructure, respectively.

E is the corresponding normalized structure factor.

�iso � �jFdj ÿ jFpj�:

2. Introduction

Traditional soaking methods for obtaining heavy-atom

derivatives are a time-consuming and cumbersome process. In

recent years, new techniques based on quick-soak methods

(Dauter et al., 2000; Sun & Radaev, 2002; Sun et al., 2002), the

use of noble gases (Quillin & Matthews, 2002) and innovation

in the derivatization strategies (Garman & Murray, 2003) have

added new appeal to isomorphous replacement methods.

Once isomorphous diffraction data are available, the

following phasing procedure is usually applied: the ®rst step is

the determination of the positions of the heavy atoms; the

estimate of the native protein phases is obtained in a second

step, via the combined use of FH, |Fp|, |Fd| (Blow & Crick, 1959;

Terwilliger & Eisenberg, 1987; Terwilliger, 1994).

The contribution of direct methods to the ®rst step started

with Steitz (1968), who used only re¯ections with restricted

phase values for solving the carboxy-peptidase substructure,

and continued with Neidle (1973), Navia & Sigler (1974),

Wilson (1978) and Schevitz et al. (1981). The advent of shake-

and-bake (Weeks et al., 1994) through the combined use of

reciprocal- and real-space re®nement made the solution of the

substructures more robust. Several well documented programs

can be used today for heavy-atom location in single isomor-

phous replacement (SIR) techniques: SnB (Xu et al., 2000),

SHELXD (Schneider & Sheldrick, 2002), RANTAN (Yao,

1981), ACORN (Yao, 2002) and SIR2002 (Burla et al., 2004).

Hauptman (1982a) proposed replacement of the classical

two-step procedure by a one-step process: the new approach

was able to directly estimate triplet phase invariants from

isomorphous diffraction magnitudes via the method of joint

probability distribution functions. Hauptman's formula was

modi®ed by Giacovazzo et al. (1988) and applied in a series of

papers to a number of practical cases (see references in

Giacovazzo et al., 1995). More recently, the method has been

optimized (Giacovazzo & Siliqi, 2002; Giacovazzo et al., 2002):

the new mathematical technique is able to take the errors into

account, i.e. the error is a primitive random variable, as well as

the atomic coordinates, and has been successfully imple-

mented in a procedure for the automatic crystal structure

solution of proteins.

The same mathematical approach (i.e. taking errors into

account) has been also applied by Giacovazzo et al. (2003) to

optimize the formulas, previously derived by Hauptman

(1982b) and by Giacovazzo (1983), which estimate triplet

phase invariants in the single-wavelength anomalous diffrac-

tion (SAD) case. The applications to real cases were disap-

pointing. The phasing strategy was then changed: instead of

using direct methods to estimate triplet phase invariants in the

SAD or MAD (multiple-wavelength anomalous diffraction)

cases, direct methods were ®rst used to estimate the structure-
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factor moduli of the anomalous scatterer substructure, from

which the anomalous scatterer positions could be found

(Burla et al., 2002, 2003). Then such information was used as

prior in a new mathematical approach aiming at ®nding the

protein phases via the method of joint probability distribution

functions (Giacovazzo & Siliqi, 2004). The new conclusive

formulas proved particularly effective for both SAD and

MAD cases.

The above results suggest the application of direct methods

to estimate, in the SIR case, the structure-factor moduli of the

heavy atoms (rather than to estimate triplet phase invariants).

This job is the main aim of this paper: the joint probability

distribution function P�EH;Ep;Ed� will be calculated, from

which the estimates of |FH| will be derived, given the diffrac-

tion magnitudes. To check the usefulness of the new approach

in practical cases, the heavy atoms of some test structures will

be located by Patterson techniques and/or by direct methods.

It is worthwhile stressing that the estimates of |FH| obtained in

this paper can be easily implemented in all of the most widely

used programs for treating isomorphous data (e.g. SnB,

SHELXD, RANTAN, ACORN, SIR2002), and are potentially

useful for increasing their ef®ciency.

3. The SIR case: the estimate of |FH|

We will study the joint probability distribution function

P�EH;Ep;Ed� �1�
under the following assumptions:

(a) the atomic positions of the native protein structure and

the positions of the heavy atoms in the derivative structure are

the primitive random variables of our probabilistic approach;

(b)

jFdj exp�i'd� � jFpj exp�i'p� � jFH j exp�i'H� � j�dj exp�i�d�
�2�

is the structure factor of the derivative. It is the sum of the

protein structure factor Fp, of the heavy-atom structure factor

FH, and of an eventual error �d = j�dj exp i�d� � cumulating the

effects of the measurement errors and of the lack of

isomorphism. The variable �d is an additional primitive

random variable, for which we assume that h�di = 0, and that

hj�dj2i � hj�ij2i � hj�mj2i;
where hj�mj2i arises from intensity measurement statistics and

h|�i|
2i from the lack of isomorphism. In accordance with (2),

and in the absence of correlation among Fp;FH and �d, it is

hjFdj2i �
P

d � hjFpj2i � hjFHj2i � hj�dj2i:
The characteristic function of (1) is

C�uH; up; ud; vH; vp; vd� ' exp
�ÿ 1

4 ��u2
H � v2

H� � �u2
p � v2

p�
� �u2

d � v2
d� � 2k13�uHud � vHvd�

� 2k23�upud � vpvd��
	
:

uH; up; ud; vH; vp; vd are carrying variables associated with

AH �
�PH

j�1

fj cos 2�h � rj

�.
"
P

H

ÿ �1=2
;

Ap �
�Pp

j�1

fj cos 2�h � rj

�.
"
P

p

ÿ �1=2
;

Ad �
�Pp

j�1

fj cos 2�h � rj �
PH
j�1

fj cos 2�h � rj � j�dj cos#d

�.
"
P

d

ÿ �1=2
;

BH �
�PH

j�1

fj sin 2�h � rj

�.
"
P

H

ÿ �1=2
;

Bp �
�Pp

j�1

fj sin 2�h � rj

�.
"
P

p

ÿ �1=2
;

Bd �
�Pp

j�1

fj sin 2�h � rj �
PH
j�1

fj sin 2�h � rj � j�dj sin#d

�.
"
P

d

ÿ �1=2
;

respectively. AH;BH;Ap;Bp;Ad;Bd are the normalized real

and imaginary components of EH;Ep;Ed, respectively,

k13 �
P

H

�P
d

ÿ �1=2
; k23 �

P
p

�P
d

ÿ �1=2
:

We obtain

P�AH;Ap;Ad;BH;Bp;Bd� � �ÿ3�det K�ÿ1=2

� exp�ÿ1=2�TKÿ1T��; �3�
where

T � �21=2AH; 21=2Ap; 21=2Ad; 21=2BH; 21=2Bp; 21=2Bd�;

K � Q 0

0 Q

���� ����;
Q �

1 0
P

H=
P

d

ÿ �1=2

0 1
P

p=
P

d

ÿ �1=2P
H=
P

d

ÿ �1=2 P
p=
P

d

ÿ �1=2
1

��������
��������;

det �K� � �det �Q��2 � hj�dj2i=
P

d

ÿ �
;

Kÿ1 � Qÿ1 0

0 Qÿ1

�����
�����:

In terms of moduli and phases, (3) may be rewritten as

P�RH;Rp;Rd; 'H; 'p; 'd�
� �ÿ3�det K�ÿ1=2RHRpRd expfÿ��11R2

H � �22R2
p

� �33R2
d � 2�12RHRp cos�'H ÿ 'p�

� 2�13RHRd cos�'H ÿ 'd� � 2�23RpRd cos�'d ÿ 'p��g;
�4�

where �ij is the generic element of the matrix Kÿ1. We ®rst

apply the approximation 'p ' 'd (Giacovazzo & Siliqi, 2002)

and then we use standard mathematical techniques to

derive, from (4), the following marginal and conditional

distributions:

(a)

P�RH;Rp;Rd� � SRHRpRd expfÿ��11R2
H � �22R2

p � �33R2
d�g

� Io�2RHX�;
where X = �12Rp � �13Rd and S is a suitable scale factor;



(b)

P�RHjRp;Rd� � LRH exp�ÿ�11R2
H �Io�2RHX�; �5�

where L = 2�11 exp ÿX2=�11� �:
Equation (5) shows how the P1 Wilson distribution

W RH� � � 2RH exp�ÿR2
H� is modi®ed by the prior knowledge

of Rp;Rd,

P�RHjRp;Rd� � W�RH�M�RH; �11;X�;
where

M�RH; �11;X� � �11 exp��1ÿ �11�R2
H ÿ X2=�11�Io�2RHX�:

The function M is the product of two functions: a rapidly

decreasing exponential function [�11 > 1, see (11)] and the

monotonic increasing function Io. Accordingly, the form and

the location of P will depend on the �11 and X parameters.

The location may be calculated as follows. SinceZ 1
0

x� exp�ÿ�x2�Io�bx� � ÿ���� 1�=2��2����1�=2�ÿ1

� exp�b2=�4��� 1F1

1ÿ �
2

; 1;
ÿb2

4�

� �
;

where ÿ and 1F1 are the gamma and the con¯uent hyper-

geometric function, respectively, we obtain

hRHjRp;Rdi � 2ÿ1��=�11�1=2
1F1 ÿ 1

2 ; 1;ÿX2

�11

� �
:

In its turn, 1F1 ÿ 1
2 ; 1;ÿz2

ÿ �
is well approximated by the

hyperbole y = �1� 2z2=�1=2�1=2 in the full range (0,1):

accordingly, the expected value of RH may be calculated via

the simpler expression

hRHjRp;Rdi � 1
2 ��=�11�1=2 1� 4

�

X2

�11

� �1=2

: �6�

The standard deviation �RH
associated with the estimate (6)

may be calculated as follows. Since

hRHjRp;Rdi2 �
�

4
�ÿ1

11 � X2�ÿ2
11 �7�

and

hR2
HjRp;Rdi � �ÿ1

11 � X2�ÿ2
11 ; �8�

then

�RH
� �hR2

Hj::i ÿ hRHj::i2�1=2 � 1ÿ �
4

� �
�ÿ1

11

h i1=2

; �9�

from which

hRHj::i
�R

H

� �=4 � X2=�11

1ÿ �=4

� �1=2

: �10�

The conditional expected values of RH;R2
H and RH=�RH

can be

calculated by observing that

�11 �
P

H �hj�dj2i
ÿ �

=hj�dj2i; �11�
�12 �

P
p

P
H

ÿ �1=2
=hj�dj2i; �12�

�13 � ÿ
P

H

P
d

ÿ �1=2
=hj�dj2i: �13�

In particular, we obtain

hjFHj2i �
P

HP
H �hj�dj2i

ÿ � hj�dj2i �
P

HP
H �hj�dj2i

ÿ ��2
iso

" #
:

�14�

It is worthwhile relating the above result with previous results

in the literature. Perutz (1956) approximated |FH|2 with the

difference jFdj2 ÿ jFpj2
ÿ �

. Blow & Crick (1959) and Rossmann

(1960) suggested a better approximation: jFHj2 ' �2
iso. A

deeper analysis was performed by Philips (1966) and Dodson

& Vijayan (1971), suggesting the type and the weight of the

interatomic vectors in a �2
iso Patterson synthesis. Further

weighting schemes have been proposed by Blessing & Smith

(1999) and by Grosse-Kunstleve & Brunger (1999).

None of the previous authors derived, via a probabilistic

approach, the effect of the errors on the evaluation of the

moduli |FH|2. Conversely, (14) suggests that, if hj�dj2i = 0, our

probabilistic approach con®rms the Blow and Rossmann

approximation hjFHj2i ' �2
iso. If hj�dj2i 6� 0, the Blow and

Rossmann estimate should be affected by a systematic error,

increasing with hj�dj2i.

4. The practical estimate of |EH|

The preceding session suggests that the most suitable

approximations of RH can be derived from the right-hand

sides of (6) and (8). However, their use requires the simulta-

neous knowledge of the scattering power of the heavy-atom

substructure
P

H (a quantity necessary to scale |Fd| with

respect to |Fp|) and an independent estimate of the cumulative

error (i.e. hj�dj2i). Both these quantities are not accessible

from the experimental diffraction data: indeed, in the early

stages of the phasing process, we ignore both the number of

heavy atoms and their occupancies (they de®ne
P

H), and the

component �i of �d arising from the lack of isomorphism.

On the other hand, suitable statistics (Giacovazzo et al.,

2002) may be applied to experimental data to estimate the

value of �PH �hj�dj2i�. We have used this last result to design

a procedure for the experimental estimate of the right-hand

sides of (6) and (8), which may be schematized as follows:

Step 1: The value of P
H �hj�dj2i

ÿ � �15�

is estimated. Since the value of
P

H is ignored, we assume the

experimental value of (15) as the best estimate of
P

H.

Step 2: Fp is normalized via the Wilson plot procedure, and

Fd via a differential Wilson plot (Giacovazzo et al., 1994), by

using the value of (15) for the differential scaling.

Step 3: The value of �n2
iso is calculated as

�n2
iso � �iso� �2� PH �hj�dj2i

ÿ �
:

We now use (11)±(13) to rewrite (7)±(10) in a form depending

on the ratio
P

H =hj�dj2i. We obtain
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hRHjRp;Rdi �
1

�1� hj�dj2�1=2

�

4
hj�dj2i ��n2

iso

h i1=2

; �16�

hR2
HjRp;Rdi �

1

�1� hj�dj2i�
�hj�dj2i ��n2

iso� �17�

and

�RH
� 1ÿ �

4

� � hj�dj2i
�1� hj�dj2i�

� �1=2

; �18�

with hjEH j2i = hjFHj2i=
P

H; �2
iso=�

n2
iso = �2

iso=
P

H �hj�dj2i
ÿ �

;
hj�dj2i = hj�dj2i=

P
H .

Equation (17) is plotted in Fig. 1 for various values of the

parameter hj�dj2i. The corresponding straight line:

(a) passes through the origin when hj�dj2i = 0 and bisects

the quadrant (jEHj2;�n2
iso). In this case, the relation hjEHj2i '

�n2
iso provides an unbiased estimate of jEHj2, whatever the �n2

iso

value.

(b) does not intersect the origin when hj�dj2i 6� 0, and its

slope decreases for increasing values of hj�dj2i. As a general

trend, the relation hjEHj2i ' �n2
iso underestimates jEHj2 when

�n2
iso is small and overestimates jEHj2 when �n2

iso is large. The

larger the value of hj�dj2i, the larger the overestimation and

underestimation effects.

It is clear, however, that the formulas (16)±(18) have to be

modi®ed in order to be applied to practical cases. Their new

expressions should take into account (a) the approximation

introduced in Step 1 of the procedure; (b) the fact that only

the component �m of �d is experimentally available; (c) the

fact that hj�dj2i is not accessible from experiment.

We found that assuming hj�dj2i1=2 = 10hj�mj2i1=2=
�PH �hj�dj2i�1=2 (the average is calculated per resolution

shell) makes (16)±(18) simple and effective tools for esti-

mating jEHj.
We have applied (17) to the test structures quoted in

Table 1. In the table, we give the code names, the space group,

the number of atoms in the asymmetric unit (water molecules

excluded) and, for both the native and the derivative, the data

resolution and the number of measured re¯ections. For each

derivative we also quote the species of the heavy atoms and

their number in the asymmetric unit.

To estimate the agreement between the jEH j values esti-

mated via (17) and the true values (i.e. those calculated using

coordinates and occupancy factors in the published structure),

we use the residual

RE �
P

h jhjEHji ÿ jEHtruejj=
P

h jEHtruej
and we compared its values with

R� �
P

h jj�n
isoj ÿ jEtruejj=

P
h jEtruej:

The reader may immediately appreciate that RE << R� in

Table 2 for all the test structures (they were originally solved

by SIR±MIR techniques; M-FABP was solved by combining

MIR and molecular replacement methods). One can therefore

expect that Patterson techniques (see x5) or direct methods

Table 1
Main crystallochemical data of the test structures.

NA is the number of non-H atoms in the asymmetric unit, RES is the resolution limit of the experimental diffraction data (of the native and of each derivative,
respectively), NREFL is the corresponding value of measured re¯ections. Under the heading `Heavy atoms', the atomic species and the number of heavy atoms in
the asymmetric unit are speci®ed.

Native Derivative

Structure code Space group NA RES (AÊ ) NREFL RES (AÊ ) NREFL Heavy atoms

BPO² P213 4529 2.35 23956 2.80 15741 Au 2
2.76 7433 Pt 2

DUTPASE³ R3 1028 1.90 13638 2.00 11704 Hg 1
2.10 9862 Pt 1

E2§ F432 1853 2.65 10388 3.00 9179 Hg 1
GLPE} P32 931 1.06 44798 2.00 6506 Ho 2
M-FABP²² P212121 1101 2.14 7595 2.18 7125 Hg 1

2.15 6586 Pt 2
NOX³³ P41212 1689 2.26 9400 2.26 9068 Pt1 1

2.59 5425 Hg 3
2.38 7299 Au 2
2.37 6752 Pt2 2

² Hecht et al. (1994). ³ Cedergren-Zeppezauer et al. (1992). § Mattevi et al. (1992). } Spallarossa et al. (2001). ²² Zanotti et al. (1992). ³³ Hecht et al. (1995).

Figure 1
Equation (17) is plotted for various values of the parameter hj�dj2i.



(see x6) will provide better results when (17) is used rather

than when the classical �iso is employed.

5. Location of the heavy atoms via Patterson techniques

A general approach for the automatic determination of the

heavy-atom substructure is the so-called implication function

Is(r) (Simpson et al., 1965; PavelcÏõÂk, 1988; Pavelcik, 1998;

PavelcÏõÂk et al., 1992; Grosse-Kunstleve & Brunger, 1999). It

may be considered as the product of a symmetry operation

which transforms a Harker section into a function having

maxima at the possible atomic positions compatible with the

particular symmetry element generating the Harker section,

Is�r� � P�rÿ Csr�=ns; �19�
where (r ÿ Csr) is the Harker vector created by the s th

symmetry element Cs , ns is the multiplicity, equal to the

number of symmetry operators, which generates the given

Harker vector. For high-symmetry space groups, (19) may be

generalized into

SMF�r� � Min
�m

s�1
Is�r�; �20�

where the minimum operator Min indicates that the lowest

value among the �m functions Is has been chosen.

To eliminate spurious maxima, we have calculated the S(r)

(minimum superposition function) map de®ned by

S�r� � Min�P�rÿ r1�; SMF�r��; �21�

where r1 is a trial atom selected from the peaks in the SMF(r)

map.

We have applied to the test structures a modi®ed form of

the program SIR2002 (described by Burla et al., 2004). The

procedure is of multisolution type: more positional vectors r1

may be used and, correspondingly, more trial solutions may be

found. For all the test structures, the correct solution has been

immediately found by using (15) and the largest peak in the

SMF(r) map.

In Table 3, we show the results for MFABP obtained via the

automatic use of (17). We will shortly use its experimental data

for checking our theoretical results both for Patterson tech-

niques and for direct-methods phasing. In Table 3, we give, for

each derivative:

(a) the positions of the highest intensity peaks in the ®nal

electron-density maps obtained when �n2
iso and hjEHj2i are

used; the peaks in bold type correspond to the true heavy-

atom positions.

(b) the average distance (hDISTi, in AÊ ) between the true

atomic positions and the positions found by the program.

It may be observed that, when (17) is used:

(i) the two Pt and the Hg atoms are all more accurately

positioned;

(ii) the contrast of the heavy-atom peak intensities with

respect to the other peaks is higher.

Similar results are obtained with the other test structures.

For example, for GLPE, the two peaks with the highest

intensity correspond to the true heavy-atom positions when

both �n2
iso and hjEHj2i are used. However, the value of hDISTi

is equal to 1.33 AÊ in the ®rst case, and is equal to 0.19 AÊ in the

second case.

6. Location of the heavy atoms via direct methods

We used a modi®ed form of the program SIR2002 to ®nd the

heavy-atom substructure via tangent procedures. Applications

were made according to two protocols:

Protocol 1: |�n
iso| is used as an approximation of jEHj;

Protocol 2: the RH estimate as provided by (17) is

employed.

In both protocols, 1000 re¯ections were submitted to the

tangent process, and 60 trials only were explored by a random

Acta Cryst. (2004). A60, 233±238 Carmelo Giacovazzo et al. � Locating heavy atoms 237
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Table 2
For each derivative, the values of RE (%) and of R� (%) are given.

Structure code Derivative R� (%) RE (%)

BPO Au 57 37
Pt 62 39

DUTPASE Hg 59 36
Pt 67 36

E2 Hg 56 39
GLPE Ho 60 39
M-FABP Hg 61 36

Pt 64 42
NOX Pt1 69 39

Hg 69 42
Au 66 41
Pt2 69 43

Table 3
M-FABP: for each derivative, the coordinates of the largest intensity Fourier peaks are given, as provided by the modi®ed version of the program
SIR2002.

Columns 2±4 refer to the case in which �n2
iso is used, columns 5±8 are obtained when hjEj2i is employed. The sites corresponding to true positions are in bold type,

OCC is the chemical occupancy of the sites (as in the published paper) and hDISTi is the average distance in AÊ between the true atomic positions and the
corresponding experimental peaks.

�n2
iso hjEj2i

Peak positions Intensity hDISTi Peak positions Intensity hDISTi OCC

Pt 0.7488, 0.3093, 0.9346 5252 0.173 0.7498, 0.4772, 0.8989 7355 0.073 0.6
0.7492, 0.2492, 0.9500 2260 1.110 0.2503, 0.3061, 0.9353 2749 0.378 0.4
0.2507, 0.4937, 0.8993 2074 0.2497, 0.3064, 0.4326 2185
0.7473, 0.4597, 0.2988 1344 0.7305, 0.2548, 0.0474 2115

Hg 0.3887, 0.4424, 0.7584 5957 0.117 0.8899, 0.4445, 0.2685 7308 0.084 0.4
0.2898, 0.3213, 0.7374 1901 0.9068, 0.4008, 0.3034 2164
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starting procedure. We describe in some detail the results

obtained for MFABP, Pt derivative, at the end of the phasing

process (i.e. when the phase-extension procedures have been

applied):

(a) for Protocol 1, the best solution (among the 60 explored)

shows an average phase error equal to 49� for 4600 phased

re¯ections; the corresponding phase error for the best solution

of Protocol 2 is 15� for 4505 re¯ections.

(b) both the heavy atoms are located by Protocol 2, for

which hDISTi = 0.20 AÊ . Only one atom is located by the best

solution found via Protocol 1, with hDISTi = 0.18 AÊ .

The results for all the test structures are summarized in

Table 4. The reader can verify that the ef®ciency of Protocol 2

to locate the heavy-atom substructure is markedly greater.

7. Conclusions

We have derived, via the method of the joint probability

distribution functions, probabilistic estimates of the structure-

factor moduli of the heavy-atom substructure, given the

moduli of the native and of the derivative. The approach takes

into account the errors and provides new formulas that have

been successfully applied to some practical cases. Since

improved estimates of the moduli |FH| improve both direct

phasing and Patterson map quality, it may be expected that the

integration of such estimates into modern packages for

protein crystal structure solution from isomorphous data can

increase their effectiveness.
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Table 4
For each test structure, the type of derivative is speci®ed.

For each protocol, nf /n is the ratio between the number of heavy atoms found
and the number of heavy atoms to ®nd, hDISTi is the average distance (AÊ )
between the heavy-atom positions found by the procedure and the published
positions.

Protocol 1 Protocol 2

Structure code Derivative nf /n hDISTi nf/n hDISTi
M-FABP Hg 1/1 0.05 1/1 0.17

Pt 1/2 0.18 2/2 0.20
NOX Pt1 1/1 0.48 1/1 0.62

Hg ± ± 1/3 0.31
Au 2/2 0.40 2/2 0.38
Pt2 ± ± 1/2 0.60

GLPE Ho 1/2 0.11 2/2 0.18
E2 Hg 1/1 0.32 1/1 0.22
BPO Au 2/2 0.04 2/2 0.04

Pt 2/2 0.18 2/2 0.21
DUTPASE Hg 1/1 0.06 1/1 0.09

Pt 1/1 0.07 1/1 0.10


